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A model of an artery consisting of a thin-walled flexible tube filled with a Newtonian incompressible liquid
and surrounded by an external viscoelastic tissue is studied. The dispersion relations and attenuation lengths
are determined for the lowest axially symmetric propagation modes: the Young, Lamb, and torsional modes.
The numerical calculations confirm a low attenuation of the Young mode and a relatively weak dependence of
its phase velocity on the elastic parameters of the surrounding medium. The Lamb and torsional modes show
a nonzero frequency �a gap� at zero wave vector except for the limiting case of the absence of surroundings.
The attenuation of the Lamb mode at zero frequency and the gap frequency turns out to be particularly
sensitive to the elastic parameters of the surroundings. However, the spatial attenuation of the Lamb mode
extends over a length of the order of 10 cm at the viscoelastic parameters corresponding to human tissues.
Such lengths are comparable to the size of human organs. Three kinds of local axially symmetric perturbations
have been studied, and the corresponding amplitude ratios of the Lamb to the Young mode calculated. The
amplitude of the Lamb mode turns out to exceed that of the Young mode by a factor of ten at some frequencies
with perturbations involving axial motions. Physiological consequences of this effect are discussed.
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I. INTRODUCTION

The blood flow in arteries consists of two components,
steady and pulsatile �1–3�. The pulsatile flow predominates
in the aorta and in larger arteries, whereas flow becomes
practically continuous in the capillaries �4�. The larger arter-
ies can thus be treated as waveguides conducting the initial
forward waves and the backward waves reflected at bifurca-
tions. Most existing work treats the waveguides as mono-
mode. The only mode under consideration, called the Young
mode, shows a linear dispersion relation with a relatively
weak damping. The phase speed of this mode ranges from
5 to 15 m /s �1,2,5�, whereas the heart beat frequency is
somewhat higher than 1 Hz. This means that the wavelength
of the fundamental harmonic �first harmonic� wave is about
5–15 m. The real pulse waves then are wave packets con-
taining very many harmonics of the fundamental wave. Al-
though the spatial extent of the entire wave of the Young
mode packet is of the order of magnitude of meters, the
phenomena of propagation and reflection of waves are of
vital importance in the diagnostics of cardiovascular diseases
�4,6�. In the present work, we use linearized Navier-Stokes
equations valid in the long-wavelength limit �7�.

The main issue of this work concerns the excitation of
different harmonic waves �modes� by simple motions of the
surrounding tissues. The main unexpected result is that a
mode known as the Lamb mode, neglected in many existing
analyses, becomes excited with rather high amplitude by
quite simple and physiologically conceivable motions. The

details of the model are described in Sec. II. Section III pre-
sents the derivation of the equations giving the dispersion
relations of the axisymmetric modes supported by the model.
The quantities characteristic of the modes and of their dis-
persion relations are presented in Sec. IV, and the method of
obtaining the amplitudes of the modes generated by three
kinds of local periodic perturbation is discussed in Sec. V.
Section VI contains numerical results for the velocity pro-
files, dispersion relations, attenuation lengths, and excited
amplitudes obtained with the model parameters correspond-
ing to human arteries in various surrounding tissues. Section
VII summarizes the results obtained, their physiological sig-
nificance, and prospects for further studies.

II. THE MODEL

An artery is modeled here by an elastic thin-walled tube
of inner radius a, thickness h, h /a�1, and density �w. Its
Young modulus is E and Poisson ratio �. The tube is filled
with a Newtonian incompressible liquid of mass density �
and dynamic viscosity �. The outer medium, being a model
of the tissue surrounding the vessel, is bounded by an exter-
nal infinitely rigid and heavy tube coaxial with the artery, so
its thickness is d. The geometry of the model is schematized
in Fig. 1. The restoring forces and internal friction of the
outer medium are described by three complex elastic param-
eters Kz, Kr, and K� and discussed in more detail in Sec. III.
The axial motions of the surrounding medium are decoupled
here from the radial motions at any wavelength, in contrast
with an analogous thick-walled vessel model where they are
decoupled at k=0 only. Despite this simplification, the model
may reflect the real physiological situation of the outer me-
dium, e.g., sliding on another layer of muscles or bones.
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The model shows a symmetry of the point group D�h
�� /mmm� and, in addition, is invariant by any translation
along the vessel axis. All the normal modes are classified by
the irreducible representations of this group. Consequently,
the z and � dependence of every mode is given by a phase
factor exp�ikz+ in���, where the wave vectors k�0 charac-
terize the modes propagating in the positive direction and k
	0 the backward modes, while the azimuthal wave number
n� is a discrete variable, n�=0,1 , . . . ,�.

III. GOVERNING EQUATIONS AND BOUNDARY
CONDITIONS

A. Equations of motion of the fluid and general form of the
velocity field

A Newtonian liquid obeys the momentum equation
�Navier-Stokes equation�

�v�

�t
+ v� · �� v� = −

1

�
�� p +

�

�

v� �1�

and the continuity equation of an incompressible liquid

�� · v� = 0. �2�

The quantity p is the excess pressure of the liquid over a

constant equilibrium value. The nonlinear term v� ·�� v� is ne-
glected in the approximation of small vibrations and long
wavelengths. When applied to Eq. �1� so linearized, the
divergence operator produces the pressure as a harmonic
function �8�, i.e.,


p = 0. �3�

In cylindrical coordinates and with n�=0, the linearized
Navier-Stokes equation �1� reads
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The continuity equation �Eq. �2�� is then

�vz

�z
+

�vr

�r
+

vr

r
= 0. �7�

The component v� is entirely decoupled from the remaining
components of the liquid velocity as a result of the symmetry
of the system.

With the wave ansatz p�z ,r , t�= P�r�exp�−i�t+ ikz� and
vq�z ,r , t�=Vq�r�exp�−i�t+ ikz�, q=z ,r ,�, Eq. �3� reduces to
the Bessel equation having as a solution finite at r=0

P�r� = BJ0�ikr� , �8�

where J0�ikr� is the Bessel function of the first kind, and Eqs.
�4�–�6� give

Vz�r� =
Bk

��
J0�ikr� + CJ0��kr� , �9�

Vr�r� = −
Bk

��
J1�ikr� +

ikC

�k
J1��kr� , �10�

V��r� = DJ1�akr� , �11�

where

�2 =
i��

�
− k2. �12�

The coefficients B, C, and D are to be determined by bound-
ary conditions. The torsional motion is decoupled from Vz
and Vr by symmetry.

B. Motion of the vessel wall and boundary conditions

The cylindrical components of the displacement vector
uz�z ,r=a , t�, ur�z ,r=a , t�, and u��z ,r=a , t� of the vessel wall
obey the following system of equations:
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where

E� =
E

1 − �2 . �16�

The stresses exerted by the flowing liquid on the inner sur-
face of the vessel wall are proportional to the liquid velocity
gradient field �9�. The explicit form of Eqs. �13�–�15� helps

z

h
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d

FIG. 1. �Color online� Geometry of model.
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to realize the properties of the outer medium in the present
model. This is, namely, a kind of metamaterial, which con-
sists of rods sticking inward from the outermost rigid tube
�see Fig. 1� in the radial direction. The parameters Kr� and Kr�
are the restoring force constant �Young modulus� and the
damping constant, respectively, which are related to the lon-
gitudinal elongation or compression of the rods. The rods are
supposed to be attached to the outer rigid tube on a kind of
elastic articulations so that there exist restoring forces pro-
portional to the tilt angles. The forces may also be inter-
preted as the ones acting on the surroundings when it slides
harmonically on still more outer tissue. The lack of elonga-
tion stiffness constants in the directions z and � as well as of
a mass density of the outer medium may be plausibly ab-
sorbed in the elastic properties and in the mass density of the
vessel wall.

The nonslip boundary conditions between the liquid and
the vessel wall are

�uz

�t
= �vz�r=a, �17�

�ur

�t
= �vr�r=a, �18�

�u�

�t
= �v��r=a. �19�

As in the case of the liquid velocity, the vessel wall displace-
ment has a wave form uz=Ze−i�t+ikz, ur=Re−i�t+ikz, and u�

=Te−i�t+ikz.

IV. DISPERSION RELATIONS OF THE LOWEST MODES

With the wave ansatz adopted, the amplitudes B ,C ,D
�Eqs. �8�–�11�� and Z ,R ,T have to satisfy a system of homo-
geneous linear equations which for symmetry reasons splits
into two independent parts as written below in matrix form:
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and

�M2�
T

D
� = 0, �22�

with

M2 = ��w�2 −
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�
	 ,

�23�

where the following abbreviations have been adopted: 


=�ka and K̃q= �1 /hd��Kq�− i�Kq��, while q=z ,r ,�.
In the long-wavelength limit ka�1, the Bessel functions

are approximated by J0�ikr��1 and J1�ikr�� ikr /2, which
produces a flat pressure profile P�r�=B �see Eq. �8�� and
�k��= �i+1�
�� /2�.

The condition det�M1�=0 gives the dispersion relations
for the modes involving axial and radial motions of the ves-
sel wall, traditionally called Young �i=1� and Lamb �i=2�
modes �10�, whereas det�M2�=0 defines the dispersion rela-
tion of the torsional mode.

To solve the system of equations �20� with the singular
matrix M1 �Eq. �21��, we express the amplitudes Ci, Ri, and
Zi �i=1,2� by the pressure amplitude Bi selected as indepen-
dent �no summation implied�:

Ci = WCiBi, �24�

Zi = WZiBi, �25�

Ri = WRiBi. �26�

When inserted into Eqs. �9� and �10� the amplitudes resulting
from Eqs. �24�–�26� determine the velocity profiles corre-
sponding to each mode. They also determine the amplitudes
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of the vessel wall motions. An analogous analysis of the
system of equations �22� provides the profile of the azi-
muthal velocity given directly by Eq. �11�.

V. EXCITATION OF MODES BY SIMPLE LOCAL
PERTURBATIONS

We now wish to evaluate the amplitude ratios B2 /B1 of
the Lamb �i=2� and Young �i=1� modes excited in response
to local axially symmetric perturbations corresponding to
plausible physiological motions of the surrounding medium.
Figure 2�a� represents an overall contraction-expansion mo-
tion at z=0 which affects only the radial component. Denot-
ing by the subscript � the amplitudes of the modes propa-
gating in the positive direction and by � the modes
propagating in the negative direction, one finds B1+=B1−,
B2+=B2−.

The continuity of the vessel wall in the radial direction
requires that

R1+ + R2+ = R1− + R2− = R0 = WR1B1+ + WR2B2+,

where R0 is the amplitude of the local compression.
The continuity in the axial direction is expressed by Z1+

+Z2+=Z1−+Z2−=WZ1B1++WZ2B2+=0, which gives the de-
sired ratio

B2+/B1+ = − WZ1/WZ2. �27�

The kind of excitation shown in Fig. 2�b� represents an axial
vibration of amplitude Z0, which is antisymmetric against

reflection in the radial section, Z1++Z2+=−Z1−−Z2−
=WZ1B1++WZ2B2+=Z0.

We assume that the radius of the vessel does not change in
this kind of perturbation, R1++R2+=R1−+R2−=WR1B1+
+WR2B2+=0, so that the amplitude ratio is

B2+/B1+ = − WR1/WR2. �28�

Another kind of mode excitation shown in Fig. 2�c� is also
antisymmetric with respect to the radial section and is de-
fined by the condition

C1+ + C2+ = C1− + C2− = WC1B1+ + WC2B2+ = 0.

This condition corresponds �see Eq. �9�� to an axial velocity
constant in the whole cross section perpendicular to the axis
�J0�ikr��1 in the long-wavelength limit approximation�.
Thus, this kind of motion resembles the action of a piston
moving axially at the section z=0. Since the radial velocity
then depends on the distance r from the axis the piston is
perfectly slippery. The amplitude of this motion is given by
Z1++Z2+=−Z1−−Z2−=WZ1B1++WZ2B2+=Z0, and is accompa-
nied by the appropriate variation of the vessel radius.

The interesting mode amplitude ratio now reads

B2+/B1+ = − WC1/WC2. �29�

As far as the torsional mode is concerned, there is only one
type of symmetry-adapted excitation, i.e., a rotational one,
and thus only this mode arises.

The most interesting is the kind of motion at the root of
the aorta in the vicinity of the aortic valve. The most obvious
component of this motion is the one resembling the action of
a piston since an additional volume �stroke volume� is in-
jected into the aorta. However, the profile of the axial veloc-
ity is surely not planar, so that the axial component involving
independent displacement of the heart annulus is also ex-
cited. Less clear is a contraction-expansion annulus motion,
which must also exist independently of the passive reaction
to the radial blood velocity. A torsional motion, resembling
the motion of a bullet in the rifled barrel of a gun, cannot be
excluded either. In what follows all the kinds of motion are
treated separately.

VI. NUMERICAL RESULTS

A. Motions involved in particular modes

We have solved the equations det�M1�=0 and det�M2�
=0 �Eqs. �21� and �23�� using the parameters of the human
ascending aorta �5� with the radius a=0.0147 m, wall thick-
ness h=0.001 63 m, and the Young modulus E=0.4
�106 Pa. The vessel wall is close to being incompressible
�1,10�, i.e., �=0.5. For the wall density we take the value
�w=1055 kg /m3, but we have also studied the effect of its
variation in a wide range from �w=940 kg /m3 �correspond-
ing to the density of the adipose tissue� to �w=1975 kg /m3

�corresponding to the density of bones� �11,12�. This ap-
proach is all the more justified that the effective wall density
accounts, to the extent implied by the adopted approxima-
tions, for the density of the tissue surrounding the vessel. The
densities of various human tissues are presented in Table I

(a)

(b)

(c)

FIG. 2. Schemes of excitation of modes by circular contraction
�a�, by axial displacement �b�, and by a pistonlike movement �c�.
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�10,11�. The parameters of the blood are the following: den-
sity �=1055 kg /m3 and viscosity �=0.0032 Pa s �10,11�.
The surrounding tissue is assumed to have a thickness d,
which we take to be equal to the tube radius a, whereas the
parameters K� correspond roughly to the Young moduli of
human tissues and the damping parameters K� are compa-
rable with the blood viscosity. We have varied the parameters
K� in a wide range from 5�103 Pa �Young modulus of adi-
pose tissue� to 109 Pa �Young modulus of bones�. The values
of the parameters K� are collected in Table II �13,14�.

The difference between the Young and Lamb modes is
best visible when comparing their profiles of axial velocity.
Whereas this velocity decreases almost �however, not ex-
actly� to zero at the vessel wall in the case of the Young
mode �Fig. 3�a��, it attains its maximum there in the Lamb
mode �Fig. 3�b��. Figures 3�a�–3�d� show the effect of the
surrounding tissue on the velocity profiles of Young and
Lamb modes. Generally, the axial velocity amplitude in the
Young mode �Fig. 3�a�� decreases with increasing elastic
modulus of the surrounding medium �at a given pressure
amplitude B�, whereas the velocity amplitude in the Lamb
mode �Fig. 3�b�� increases and, moreover, in a more pro-
nounced way. The profiles of the radial velocity are more
complicated. They always start from zero at the axis �Figs.
3�c� and 3�d��. The radial velocities in the Young mode at the
vessel wall are generally much higher than in the Lamb
mode. With increasing elastic modulus K� of the surround-
ings the radial velocity of the Young mode diminishes and

that of the Lamb mode strongly grows �Figs. 3�c� and 3�d��,
which means that the Lamb mode acquires a more and more
radial character. The resulting enhanced bulging-shrinking
motions of the vessel wall may result in an easer detectabil-
ity of the Lamb mode by experiments and/or in its percepti-
bility by nervous receptors such as baroreceptors when the
vessel is placed in elastic surroundings.

TABLE I. Densities of selected human tissues �10,11�

Material Density ��w� �kg m−3�

Bones 1975

Smooth muscle 1060

Brain 1030

Skin 1191

Tendons 1125

Adipose tissue 940

Mean value of density of human body 1055–1100

TABLE II. Young’s modulus of selected human tissues
�13,14�

Material
Young’s modulus �E�

�Pa�

Adipose tissue 5�103

Relaxed smooth muscle 6�103

Contracted smooth muscle �10–250��103

Fibroglandular 5�104

Skin 5�105

Rubber 6.9�106

Fresh bone 20.685�106

Cartilage 24.13�106

Tendon 551.6�106

Bone 109
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FIG. 3. Axial velocity profiles in Young mode �a� and in Lamb
mode �c�. Radial velocity profiles in Young mode �b� and Lamb
mode �d� with various elastic parameters of surrounding medium.
Particular curves correspond to the following values of parameter
Kz�: Kz�= �1� 104, �2� 105, �3� 106, �4� 107, and �5� Kz�=108 Pa. Stan-
dard amplitude of pressure B=1 Pa. Parameters Kr� are Kr�=3Kz�;
internal friction parameters are Kr�=Kz�=0.
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B. Dispersion relations

Figures 4�a�–4�c� show the dispersion relations for the
Young, Lamb, and torsional modes with various parameters
of external tissues at vanishing internal friction Kz,r,�=0. The
dispersion relations are presented here as the real frequencies
� dependent on the complex wave vector k=Re k+ i Im k.
The real part of the wave vector Re k is shown on the posi-
tive part of the abscissa, whereas the negative part of the
abscissa represents the imaginary part Im k. The latter de-
scribes the spatial attenuation of the corresponding waves. In
the case of the vessel without surroundings, we obtain the
velocity of the Young mode 4.6 m /s, which agrees with that
calculated from the Moens-Korteweg formula �5�. The

Young mode velocity increases with increasing rigidity of
the surrounding tissue, and for the cases which correspond to
the relaxed �Kz�=6�103 Pa, Kr�=3Kz�� and contracted
�Kz�= �10–250��103 Pa, Kr�=3Kz�� muscles, we obtain the
wave velocity 6 m /s and from 6.4 to 10 m /s, respectively.
The Lamb mode is more sensitive to the elastic properties of
the surrounding tissue.

A qualitative difference of the Lamb mode as compared
with the Young one is that the introduction of the surround-
ing tissue produces a gap on the axis of the imaginary part of
the wave vector, i.e., the Lamb mode becomes highly
damped, starting from the lowest frequencies. With increas-
ing frequency the damping decreases, and starting from a
quasithreshold value of frequency, about 400 rad /s for adi-
pose tissue, 600 rad /s for contracted muscle, and 2
�105 rad /s for bone tissue, the damping becomes weak so
that the corresponding wave propagates for longer distances.
This is a trace of an optical rather than acoustic character of
the Lamb mode in terms of acoustic vs optical phonons in
condensed matter. In fact, when traced as a function of the
real wave vector, the real part of the frequency of the Lamb
mode tends to a nonzero value at k→0. An analogous be-
havior is seen in the case of the torsional mode, with, how-
ever, a stronger damping and, consequently, larger gap.

Introduction of internal friction parameters of the sur-
roundings, Kz,r,�� , generally suppresses the gap on the imagi-
nary part of the wave vector for all the modes. Variation of
the wave speed then is relatively weak �not presented in fig-
ures here�.

Figure 5 shows the propagation speeds of the three modes
as functions of the wall density �w. This dependence turns
out to be fairly weak in the physiologically relevant range of
this parameter.

The spatial extent of a damped mode is described by the
inverse of the imaginary part of its wave vector. This quan-
tity, called here the attenuation length �comparable to the
transmission of Ref. �15��, is depicted in Figs. 6�a�–6�c� for
the Young, Lamb, and torsional modes. This length exceeds
by at least a factor of 5 the size of a human in the frequency
range 0–100 rad /s in the case of the Young mode. Thus, this
mode is practically undamped in the physiological range of
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FIG. 4. Dispersion relations of Young mode �a�, Lamb mode �b�,
and torsional mode �c� with various elastic parameters of surround-
ing medium, Kr�=3Kz�, Kz,r,�� =0, �w=1055 kg /m3. Positive part of
abscissa corresponds to real part of wave vector, Re k, and negative
part to attenuation coefficient Im k. �a� Lowest line corresponds to
case without surrounding tissue and the subsequent lines correspond
to the values of parameter Kz,� 5�103, 6�103, 10�103, 5�104,
12�104, 25�104, 5�105, 69�105, 20.685�106, 24.13�106,
551.6�106, and 109 Pa.
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frequencies. The spatial damping of the Lamb and torsional
modes strongly depends on the surrounding medium. It is
noteworthy that the attenuation lengths of the Lamb and tor-
sional modes decrease only by a factor of 2–3 in the range of
frequencies from 0 to about 100 rad /s, i.e., about the tenth
harmonic of the fundamental pulse wave. Increasing the elas-
tic parameter Kz� results in a strong reduction of the attenua-
tion length in a more and more extended range of frequency.
Nevertheless, we see, e.g., that at the elastic parameters close
to the adipose �Kz�=5�103 Pa� or relaxed smooth muscles
tissue �Kz�=6�103 Pa�, this distance is still as long as about
10 cm in the frequency range 0–100 rad /s. Such a distance
cannot be neglected in the size scale of a human or of inter-
nal organs

C. Excitation of the Young and Lamb modes

The pressure amplitude ratios BL /BY excited in the three
ways described in Sec. V are depicted in Figs. 7�a�–7�c� for

selected sets of parameters. The most spectacular effect of
the presence of the Lamb mode is visible in the axial type of
local excitation �Fig. 7�a��. In the absence of external tissue,
the amplitude of the Lamb mode exceeds that of the Young
mode by a factor of 35–60 in the whole region studied ex-
cept for the very low-frequency range �12 rad /s. Addition
of purely elastic surroundings results in a suppression of the
Lamb mode at low frequencies but, in turn, produces a high
resonance peak related to the shear stiffness parameter of the
medium, Kz�. As expected, the maximum of this peak is sen-
sitive to the parameter Kz�, whereas �as we have checked� the
effect of other parameters is practically negligible.

VII. DISCUSSION

The results of the previous section confirm that of the
modes with n�=0 the least attenuated one is the Young
mode. Therefore, it is mainly this mode that is palpable at
wrist or neck arteries. The phase velocity of the Young mode
is mainly dependent on the stiffness parameters of the vessel
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FIG. 6. Attenuation length 1 / Im k in Young mode �a�, Lamb
mode �b�, and torsional mode �c� as function of frequency with
selected surrounding parameters Kz�=K��, Kr�=3Kz�, Kz,r,�� =0, �w

=1055 kg /m3. Particular curves correspond to the following values
of parameter Kz�: Kz�= �1� 0, �2� 0.1, �3� 1, �4� Kz�=10, �5� 102, �6�
103, �7� 104, and �8� 105.
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EFFECT OF SURROUNDING TISSUE ON PROPAGATION… PHYSICAL REVIEW E 76, 066304 �2007�

066304-7



wall and of the surrounding medium, whereas the internal
friction affects the properties of this mode in a way that does
not seem to have physiological importance. The effect of the
increase in the wave speed with the stiffness of the vessel
wall is well known �4�. An analogous effect of the surround-
ings of the vessel, e.g., cerebrospinal fluid, muscles, bones,
etc., seems to be worth deeper physiological studies.

The main common property of the Lamb and torsional
modes is that they show a frequency gap at k=0 in analogy
to optic modes in solids. However �which is not presented
here�, when traced as a function of the real wave vector, the
frequency of the Lamb mode happens to lose its real part at
a nonzero wave vector at high enough internal friction of the
surrounding medium. Waves longer than the corresponding
limiting wavelength decay exponentially without any oscil-
lation. Generally, the Lamb and torsional modes propagate to
longer distances above a quasithreshold frequency, roughly
corresponding to the k=0 gap, which increases with increas-
ing stiffness of the surrounding medium. We have shown that
the attenuation length of the Lamb mode may be of order of
tens of centimeters in the frequency range comprising the
main harmonics forming the wave packets of the pulse
waves. Thus, once excited, this mode has a non-negligible
amplitude in a significant portion of the artery. We have also
shown that among local perturbations the most efficient one

in exciting the Lamb mode is an axial annular motion. There
exists then a resonant frequency related to the shear stiffness
parameter of the surrounding medium. The effect is worth
studying in thick walled models �16,17�. The amplitude of
the Lamb mode excited at this frequency is particularly high.
The attenuation length at the resonant frequency is compa-
rable with the size of organs in humans. The extra pressure
then produced by the Lamb mode may be perceptible by
baroreceptors placed in those regions. Therefore, the high
amplitude found in this case may have some physiological
significance. Local perturbations may result, e.g., from mo-
tion in exercise or in locomotion as well as from internal
factors, such as wave reflection or movements of neighbor-
ing organs. It seems that the predicted high amplitude of the
Lamb mode excited in such cases deserves thorough theoret-
ical and experimental studies.
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